
Box programming Cheat Sheet

Installing the server
Get sequencer2 package from http://pulse-sequencer.sf.net

Clone from mercurial (http://www.selenic.com/mercurial) repository from anna.

hg clone ~calcium40/ControlPrograms/sequencer/sequencer2/

The pseudo XML file
The sequence is stored in an XML like structure (The file is not XML compliant).
LabView reads the same file nd uses also different tags. See the QFP manual for more
details. Tags which are interpreted by the server are:
<VARIABLES> Variable definition
<TRANSITION> Transition type definition
<SEQUENCE> Sequence commands

Variable definition

<VARIABLES>
f l o a t v a r=s e l f . s e t v a r i a b l e (” f l o a t ” , ”name f o r labview ” , \

de fau l t , min , max)
i n t v a r=s e l f . s e t v a r i a b l e (” i n t ” , ”name f o r labview ” , 10 , 0 , 100)
boo l va r=s e l f . s e t v a r i a b l e (” bool ” , ” det t ime ”)
</VARIABLES>

Configuring the server
The configuration file is located in:
config/sequencer2.ini

Basic Parameters
Parameter Name Value
box_ip_address See PTP manual
DIO_configuration_file Your hardware configuration file
file sequence_dir The directory of your sequence files
files include_dir The directory of your include files
nonet False
reference_frequency Your DDS reference frequency

Basic commands
rf_on Switch on DDS (for continous exeperiments)
seq_wait Waiting time between two pulses
ttl_pulse TTL pulse
rf_pulse phase coherent RF Pulse
rf_bichro_pulse bichromatic RF pulse

rf on
RF on switches on a single DDS with a given frequency and amplitude. This is usefull
for continous mode experiments (LaserScan).

r f o n (frequency , amplitude , address =0)

seq wait
Inserts a waiting time between two commands for Ramsey experiments, etc. The
waiting time is given in microseconds

s eq wa i t (wai t t ime)

ttl pulse
TTL pulses may act on a list of channels or on a single pulse.

t t l p u l s e ([” channel name1” , ” channel name2”] , p u l s e d u r a t i o n)

For a pulse on a single channel there are two different possibilities for defining the pulse

t t l p u l s e (” channel name” , p u l s e d u r a t i o n)
t t l p u l s e ([” channel name”] , p u l s e d u r a t i o n)

rf pulse
An RF Pulse generates a phase coherent pulse on a given transition. It is possible to
use directly defined transitions. The transition parameter is then a variable pointing to
a transition object rather than a string identifier.

r f p u l s e (theta , phi , ion , ” t rans i t i on name ” , \
address =0, i s l a s t=False)

rf bichro pulse
A Bichromatic pulse where both RF frequencies are phase coherent. The shape is
determined by the first tansition object. It is not possible to use directly defined
transitions for bichromatic pulses. The Rabi times are taken from the first transition.

r f b i c h r o p u l s e (theta , phi , ion , ” t r a n s i t i o n 1 ” , ” t r a n s i t i o n 2 ” ,\
i s l a s t=False)

Interleaved pulses
More complex series of pulses can be acieved by using the is_last and start_time

parameters of the pulse methods. By default (when omitting it) is_last is set to True.
This means that the pulses are attached one after the other. By manually setting
is_last and start_time interleaved pulses are possible.

Create a pu l s e from time 0 to 100
t t l p u l s e ([”3” , ”5”] , 1 0 0 , i s l a s t=False)

Create a pu l s e from time 50 to 130
t t l p u l s e ([”1” , ”4”] , 8 0 , s t a r t t i m e =50)

#s e t s t a r t time to zero a f t e r l a s t pu l s e
#Create a pu l s e from 130 to 330
t t l p u l s e ([”3” , ”7”] , 2 0 0)

Include files
Include files use the basic commands to generate more complex functions which are
easy to access. The server tries to include every .py file in the include directory which
is defined in the configuration file.

http://pulse-sequencer.sf.net
http://www.selenic.com/mercurial

Defining Include files

The server returns information from the sequence to LabView after compiling the
sequence. This is done with the help of return variables. Include files provide a
framework for manipulating and reading these variables. A mandatory return variable
is the PM Count variable. It contains information how many PMT trigger pulses occur
in one sequence.

The functions for modifying the return variables are:

add_to_return_list(name, \

value)

Generates / updates the return variable
given by the string name

get_return_var(name) Returns value of the return variable with
identifier name and None if the variable was
not previously defined

Def ine a Python func t i on with an op t i ona l parameter
def PMTDetection (pmt detect wai t =2000) :

””” Generates a PMT readout c y c l e
@param pmt detect wai t : Duration o f readout c y c l e
”””
We need to send a return s t r i n g to LabView
previous pm counts = g e t r e t u r n v a r (”PM Count”)
i f prev ious pm counts != None :

new pm counts = prev ious pm counts + 2
else :

new pm counts = 2
a d d t o r e t u r n l i s t (”PM Count” , new pm counts)

Generate the Pulses and wait 50 musecs
PMT trigger length = 1
t t l p u l s e (”PMT t r i g g e r ” , PMT trigger length , i s l a s t=False)
t t l p u l s e (”PMT t r i g g e r ” , PMT trigger length , s t a r t t i m e=

pmt detect wai t)
s eq wa i t (50)

Transitions

• Normally the transition data is transferred from LabView to the server.

• It is possible to define transitions directly in the sequence file.

Defining transitions

t r a n s i t i o n (t rans i t ion name , t r a b i ,
f requency , sweeprange =0, amplitude =0,
s l o p e t y p e=”None” , s l o p e d u r a t i o n =0,
i o n l i s t=None , amplitude2=−1, f requency2 =0,
port =0, m u l t i p l i e r =.5 , o f f s e t =0)

transition name string identifier for the transition
t rabi Dictionary for the Rabi frequency. The key corresponds to the ion
frequency Frequency in MHz
amplitude Amplitude in dB

trans1 = t r a n s i t i o n (” t rans i t i on name ” , {1 : 9 . 4 , 2 : 1 0 . 2} \
amplitude = −6.3)

r f p u l s e (theta , phi , ion , t rans1)

Modifying transitions
Within the <TRANSITION> tag in the pseudo XML file it is possible to modify the
frequency multiplicator and the offset frequency of the transition.
Transition modifiers are defined in the file /config/rf_setup.py

s e t t r a n s i t i o n (” t rans i t i on name ” , ” modi f ier name ”)

Debugging
The debug level of the server may be adjusted in the startup file
(start_box_server.py)
logger=ptplog.ptplog(level=logging.DEBUG)
Possible values:

logging.DEBUG Be very verbose. Should be used to debug
the system partially.

logging.INFO Print status informations
logging.WARN Print only warnings and errors
logging.ERROR Print only critical Errors

Logging to files
Not supported yet. The syntax will be:
logger=ptplog.ptplog(level=logging.DEBUG, filename=”my filename.log”)

Further Documentation

README file in sequencer2 home directory

A HTML version of the README file is available on
http://pulse-sequencer.sf.net/innsbruck

Documentation for the AD9910 DDS board is available on
http://pulse-sequencer.sf.net/innsbruck/AD9910

An API documentation of the source code can be created with the epydoc
documentation generator available at http://epydoc.sf.net

The documentation can be generated with the command
epydoc -v --top=server server sequencer2

An (outdated) version of this documentation is available at
http://pulse-sequencer.sf.net/innsbruck/sequencer2

About this document
This file was written by Philipp Schindler
Innsbruck, September 2008

http://pulse-sequencer.sf.net/innsbruck
http://pulse-sequencer.sf.net/innsbruck/AD9910
http://epydoc.sf.net
http://pulse-sequencer.sf.net/innsbruck/sequencer2

	Installing the server
	The pseudo XML file
	Variable definition

	Configuring the server
	Basic Parameters

	Basic commands
	rf_on
	seq_wait
	ttl_pulse
	rf_pulse
	rf_bichro_pulse
	Interleaved pulses

	Include files
	Defining Include files

	Transitions
	Defining transitions
	Modifying transitions

	Debugging
	Logging to files

	Further Documentation
	About this document

